Dr.V.S.KRISHNA GOVT.DEGREE COLLEGE (A), VISAKHAPATNAM. CBCS/ SEMESTER SYSTEM

(w.e.f. 2022-23)

B.A./B.Sc. MATHEMATICS COURSE-III, ABSTRACT ALGEBRA MODEL PAPER

Time:3Hrs

Max.Marks:75M

SECTION - A

Answer any FIVE questions. Each question carries FIVE marks 5 X 5 M=25 M

- Prove that the set Q¹ of rational numbers other than 1 forms an abelian group w.r.to the operation
 defined by a*b =a+b-ab for all a,b∈Q¹.
- 2. If H is a subgroup of a group G then prove that, for $a,b \in G$, $a \in Hb \Leftrightarrow Ha = Hb$
- 3. Define order of an element. In a group G, prove that if $a \in G$ then $o(a) = o(a^{-1})$.
- 4. Show that every subgroup of a group G with index 2 is a normal subgroup of the group G.
 - 5. Find the regular permutation group isomorphic the multiplicative group $\{1, \omega, \omega^2\}$
- 6. If f is a homomorphism of a group G into a group G then prove that kernel f is a normal subgroup of G.
- 7. Show that field has no proper ideals.
- 8. Define a Boolean ring and prove that in a Boolean ring R, $a + a = 0 \forall a \in R$

SECTION-B

Answer any FIVE questions. Each question carries TEN marks.

5 X 10 M=50 M

- 9. a) Prove that a finite semi group satisfying the cancellation laws is a group
- b) Prove that the set of matrices $A_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$; $\alpha \in R$ forms an abelian group w.r.to the matrix multiplication, if $\cos \theta = \cos \phi \Rightarrow \theta = \phi$
- 10. a). If H and K are two subgroups of a group G, then show that $H \cup K$ is a subgroup of G iff either $H \subseteq K$ or $K \subseteq G$.
 - (Or)

b). State and prove Lagrange's theorem for finite groups.

- 11 a). Let G and G be two groups . If $f:G\to G$ is a homomorphism then, prove the following
 - i) f(e) = e' where e and e' are the identity elements in
 - ii) $f(a^{-1}) = [f(a)]^{-1}$, for each $a \in G$.

(or)

- b). State and prove fundamental theorem of homomorphism of groups
- 12. a). State and prove cayley's theorem.

(or)

- b). Show that every subgroup of a cyclic group is cyclic
- 13. a). Prove that every finite integral domain is a field.

(or)

b). Show that the ring of integers Z is a principal ideal ring.